
Roshan Dathathri Gurbinder Gill Loc Hoang
Hoang-Vu Dang Alex Brooks Nikoli Dryden

Marc Snir Keshav Pingali

Gluon: A Communication-Optimizing
Substrate for Distributed
Heterogeneous Graph Analytics

1

Distributed Graph Analytics
Applications:

machine learning and network science

Credits: Sentinel Visualizer

Datasets: unstructured graphs

Credits: Wikipedia, SFL Scientific, MakeUseOf

2

Need TBs of memory

Gluon [PLDI’18]

● Substrate: single address space applications on distributed, heterogeneous clusters

● Provides:
○ Partitioner
○ High-level synchronization API
○ Communication-optimizing runtime

3

How to use Gluon?

● Programmers:
○ Write shared-memory applications
○ Interface with Gluon using API

● Gluon transparently handles:
○ Graph partitioning
○ Communication and synchronization

4

Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]

CPU
Galois/Ligra/...

Gluon Comm. Runtime
Partitioner

Network (LCI/MPI)

Gluon Plugin

CPU
Galois/Ligra/...

Gluon Comm. Runtime
Partitioner

Network (LCI/MPI)

Gluon Plugin

GPU

How to use Gluon?

4

Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]

CPU

IrGL/CUDA/...

Gluon Comm. Runtime

Partitioner

Network (LCI/MPI)

Gluon Comm. Runtime

Gluon Plugin

GPU

CPU

IrGL/CUDA/...

Gluon Comm. Runtime

Partitioner

Network (LCI/MPI)

Gluon Comm. Runtime

Gluon Plugin
● Programmers:

○ Write shared-memory applications

○ Interface with Gluon using API

● Gluon transparently handles:

○ Graph partitioning

○ Communication and synchronization

How to use Gluon?

4

Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]

GPU

CPU

IrGL/CUDA/...

Gluon Comm. Runtime

Partitioner

Network (LCI/MPI)

Gluon Comm. Runtime

Gluon Plugin

CPU
Galois/Ligra/...

Gluon Comm. Runtime

Partitioner

Network (LCI/MPI)

Gluon Plugin

● Programmers:

○ Write shared-memory applications

○ Interface with Gluon using API

● Gluon transparently handles:

○ Graph partitioning

○ Communication and synchronization

Contributions
● Novel approach to build distributed and

heterogeneous graph analytics systems
out of plug-and-play components

● Novel optimizations that reduce
communication volume and time

● Plug-and-play systems built with Gluon
outperform the state-of-the-art

5

Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]

GPU

CPU

IrGL/CUDA/...

Gluon Comm. Runtime
Partitioner

Network (LCI/MPI)

Gluon Comm. Runtime
Gluon Plugin

CPU
Galois/Ligra/...

Gluon Comm. Runtime
Partitioner

Network (LCI/MPI)

Gluon Plugin

● Gluon Synchronization Approach

● Optimizing Communication

● Exploiting Structural Invariants of Partitions

● Exploiting Temporal Invariance of Partitions

● Experimental Results

Outline

Gluon Synchronization
Approach

Vertex Programming Model
● Every node has one or more labels

○ e.g., distance in single source shortest path (SSSP)

● Apply an operator on an active node in the graph
○ e.g., relaxation operator in SSSP

● Operator: computes labels on nodes
○ Push-style: reads its label and writes to neighbors’ labels
○ Pull-style: reads neighbors’ labels and writes to its label

● Applications: breadth first search, connected component, pagerank,
single source shortest path, betweenness centrality, k-core, etc.

push-style

pull-style

R

R

W

W

6

Partitioning

A

B C

D

F G

I J

E H

Original graph Partitions of the graph

Host h1 Host h2

7

Partitioning

A

B C

D

F G

I J

E H

Original graph Partitions of the graph

Host h1 Host h2

7

● Each edge is
assigned to a
unique host

Partitioning

A

B C

D

F G

I J

E H

Original graph Partitions of the graph

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

7

● Each edge is
assigned to a
unique host

● All edges
connect proxy
nodes on the
same host

Partitioning

A

B C

D

F G

I J

E H

Original graph Partitions of the graph

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

: Master proxy

: Mirror proxy

7

● Each edge is
assigned to a
unique host

● All edges
connect proxy
nodes on the
same host

● A node can have
multiple proxies:
one is master
proxy; rest are
mirror proxies

Partitioning

A

B C

D

F G

I J

E H

Original graph Partitions of the graph

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

2
3

4 7

6

5

0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

7

● Each edge is
assigned to a
unique host

● All edges
connect proxy
nodes on the
same host

● A node can have
multiple proxies:
one is master
proxy; rest are
mirror proxies

How to synchronize the proxies?

8

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

: Master proxy

: Mirror proxy

● Distributed Shared Memory (DSM)
protocols
o Proxies act like cached copies
o Difficult to scale out to distributed and

heterogeneous clusters

How does Gluon synchronize the proxies?

: Master proxy

: Mirror proxy

: distance (label) from source A

9

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

8

8
8

8

● Exploit domain knowledge
o Cached copies can be stale as long as

they are eventually synchronized

1

1

1

How does Gluon synchronize the proxies?

: Master proxy

: Mirror proxy

: distance (label) from source A

9

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

8
8

1

● Exploit domain knowledge

o Cached copies can be stale as long as

they are eventually synchronized

● Use all-reduce:

o Reduce from mirror proxies to master

proxy

o Broadcast from master proxy to mirror

proxies

1

1

When to synchronize proxies?

Host h2Host h1

Distribution-agnostic
computation on local
proxies

Synchronize proxies
with each other

Distribution-agnostic
computation on local
proxies

Synchronize proxies
with each other

Read partition-1 of
the graph

Read partition-2 of
the graph

10

Gluon Distributed Execution Model

Host h2Host h1

Galois/Ligra on
multicore CPU or
IrGL/CUDA on GPU

Gluon comm.
runtime

Galois/Ligra on
multicore CPU or
IrGL/CUDA on GPU

Gluon partitioner Gluon partitioner

Gluon comm.
runtime

MPI
/LCI

MPI
/LCI

11

Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]

Gluon Synchronization API

12

● Application-specific:
o What: Label to synchronize
o When: Point of synchronization
o How: Reduction operator to use

● Platform-specific:
o Access functions for labels (specific to data layout)

Exploiting Structural
Invariants to Optimize
Communication

1

Structural invariants in the partitioning

: Master proxy

: Mirror proxy

: distance (label) from source A

13

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

8
8

1
Structural invariants in this partitioning:

● Mirror proxies do not have outgoing

edges

As a consequence, for sssp:

● Mirror proxies do not read their
distance label

● Broadcast from master proxy to
mirror proxies is not required

Graph as an adjacency matrix

Graph view Adjacency matrix view

14

Partitioning an adjacency matrix

Graph view Adjacency matrix view

15

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

: Master proxy

: Mirror proxy

Partitioning strategies with 4 partitions

Unconstrained
Vertex Cut

(UVC)

Incoming
Edge Cut

(IEC)

Outgoing
Edge Cut
(OEC)

Cartesian
Vertex Cut

(CVC)

16

• Algorithm invariant in SSSP:

Partitioning: strategies, constraints, invariants

17

Strategy Constraints and Invariants SSSP: Invariants SSSP: Sync
Outgoing
Edge-Cut (OEC)

Mirrors: no outgoing edges Mirrors: label not read Reduce

Incoming
Edge-Cut (IEC)

Mirrors: no incoming edges Mirrors: label not written Broadcast

Cartesian
Vertex-Cut (CVC)

Mirrors: either no outgoing edges
or no incoming edges

Mirrors: either label not
read or label not written

Reduce-partial &
Broadcast-partial

Unconstrained
Vertex-Cut (UVC)

None None Reduce &
Broadcast

R W

Exploiting Temporal
Invariance to Optimize
Communication

2

Bulk-communication
● Proxies of millions of nodes need to be

synchronized in a round
o Not every node is updated in every round

● Address spaces (local-IDs) of different
hosts are different

● Existing systems: use address translation
and communicate global-IDs along with
updated values

2

2

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

3

4 7

6

5

0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

: distance (label) from source A

8 8

8

8

18

2

Bulk-communication in existing systems

2

2

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

3

4 7

6

5

0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

: distance (label) from source A

8 8

8

8

19

Host h1 Host h2

65

: Global IDs

: Label

2 2

: Local IDs

42

8 8

2 2
C G

2 2
C G 42

2 2

2 2

: Address translation

: Reduction

: Communication

Bulk-communication in Gluon

20

2

2

2

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

3

4 7

6

5

0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

: distance (label) from source A

8 8

8

8

● Elides address translation during
communication in each round

● Exploits temporal invariance in
partitioning
o Mirrors and masters are static
o e.g., only labels of C, G, and J can be

reduced from h1 to h2

● Memoize address translation after
partitioning

Optimization I: memoization of address translation

21

2

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

3

4 7

6

5
0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

Host h1 Host h2
65

: Global IDs

: Local IDs

42

C G C G

: Address translation

: Communication

J J

7 5

Communication after memoization

22

Host h1 Host h2
65

: Local IDs

427 5

● Memoization establishes the order of
local-IDs shared between hosts

● Send and receive labels in each round in
the same order

● Only some labels updated in a round:
o Send simple encoding that captures which

of the local-IDs in the order were updated

2

Optimization II: encoding of updated local-IDs

2

2

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

1

3

4 7

6

5

0

1

2

4

5

6

3

: Master proxy

: Mirror proxy

A-J: Global IDs

0-7: Local IDs

: distance (label) from source A

8 8

8

8

23

Host h1 Host h2

65

: Label

2 2

: Local IDs

42

8 8

2 2 2 2

2 2

: Reduction

: Communication

7 5

8 8

110 110

: Bitvector : Encoding

Experimental Results

● Systems:
○ D-Ligra (Gluon + Ligra)
○ D-Galois (Gluon + Galois)
○ D-IrGL (Gluon + IrGL)
○ Gemini (state-of-the-art) [OSDI’16]

Experimental setup
● Benchmarks:

○ Breadth first search (bfs)
○ Connected components (cc)
○ Pagerank (pr)
○ Single source shortest path (sssp)

24

Inputs rmat28 kron30 clueweb12 wdc12
|V| 268M 1073M 978M 3,563M

|E| 4B 11B 42B 129B

|E|/|V| 16 16 44 36

Size (CSR) 35GB 136GB 325GB 986GB

Clusters Stampede (CPU) Bridges (GPU)
Max. hosts 256 64

Machine Intel Xeon Phi KNL 4 NVIDIA Tesla K80s

Each host 272 threads of KNL 1 Tesla K80

Memory 96GB DDR3 12GB DDR5

Strong scaling on Stampede
(68 cores on each host)

25

D-Galois performs best and scales well

Strong scaling on Bridges
(4 GPUs share a physical node)

26

D-IrGL scales well

Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede: clueweb12

27

Improvement (geometric mean):
Communication volume: 2x Execution time: 2.6x

Fastest execution time (sec) using
best-performing number of hosts/GPUs

28

D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x

Subsequent work using Gluon

● [EuroPar’18] Abelian compiler:
shared-memory Galois apps ---> distributed, heterogeneous (D-Galois + D-IrGL) apps

● [VLDB’18] Partitioning Policies: Cartesian Vertex Cut performs best at scale

● [PPoPP’19] Min-Rounds Betweenness Centrality (MRBC) algorithm

● [ASPLOS’19] Phoenix: fault-tolerance without overhead during fault-free execution

● [IPDPS’19] Fast Customizable Streaming Edge Partitioner (CuSP)

29

Conclusions

● Novel approach to build distributed, heterogeneous graph analytics systems: scales
out to 256 multicore-CPUs and 64 GPUs

● Novel communication optimizations: improve execution time by 2.6x

● Gluon, D-Galois, and D-IrGL: publicly available in Galois v4.0

http://iss.ices.utexas.edu/?p=projects/galois

● Use Gluon to scale out your shared-memory graph analytical applications

30

http://iss.ices.utexas.edu/?p=projects/galois

Backup slides

Graph construction time (sec)

31

Execution time (sec) on a single node of Stampede
(“-” means out-of-memory)

32

Execution time (sec) on a single node of Bridges
with 4 K80 GPUs (“-” means out-of-memory).

33

Fastest execution time (sec) of all systems using
best-performing number of hosts/GPUs

34

D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x on the average.

Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede: clueweb12 with CVC

35

Improvement (geometric mean):
● Communication volume: 2x
● Execution time: 2.6x

Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede:
clueweb12 with CVC

27

Improvement (geometric mean):
● Communication volume: 2x
● Execution time: 2.6x

Bench
mark

Communication
volume (GB)

Total execution time
(sec)

UNOPT OPT UNOPT OPT

bfs 19 11 34.7 17.9

cc 100 38 20.5 13.5

pr 405 214 146.5 111.8

sssp 114 60 51.2 28.8

Fastest execution time (sec) of all systems using
best-performing number of hosts/GPUs

28

D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x

Bench
mark

D-Galois Gemini D-IrGL

bfs 16.7 (256) 44.4 (16) 10.8 (64)

cc 8.1 (256) 30.2 (16) 23.8 (64)

pr 67.0 (256) 257.9 (32) 215.1 (64)

sssp 28.8 (128) 128.3 (32) 15.8 (64)

clueweb12

29

Bench
mark

D-Ligra D-Galois Gemini

bfs 1995 381 X

cc 177 75 X

pr 663 158 X

sssp 2986 575 X

wdc12

D-Galois performs best

Fastest execution time (sec) of all systems using
best-performing number of hosts

Strong scaling on Stampede
(68 cores on each host)

25

D-Galois performs best and scales well.

Motivation
● Distributed CPU-only graph analytics:

○ Gemini [OSDI’16], PowerGraph [OSDI’12], ...

○ No way to reuse infrastructure, such as to leverage GPUs

● Decouple communication from computation

● Enable communication optimization at runtime

2

